networkx module ################### ``NetworkX`` ------------ https://github.com/networkx/networkx Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, `“Exploring network structure, dynamics, and function using NetworkX”, in Proceedings of the 7th Python in Science Conference (SciPy2008) `__, Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug 2008 (`pdf `__). This content is originally downloaded from https://networkx.github.io/documentation/stable/tutorial.html and adapted to be shown as a presentation; moreover, we mix in additional resources such as examples (citing them and the original authors) in the last section. Creating a graph ~~~~~~~~~~~~~~~~ Create an empty graph with no nodes and no edges. .. code:: ipython3 import networkx as nx G = nx.Graph() By definition, a ``Graph`` is a collection of nodes (vertices) along with identified pairs of nodes (called edges, links, etc). In NetworkX, nodes can be any *hashable* object e.g., a text string, an image, an XML object, another Graph, a customized node object, etc. An object is hashable if it has a hash value which never changes during its lifetime (it needs a ``__hash__()`` method), and can be compared to other objects (it needs an ``__eq__()`` method). Hashable objects which compare equal must have the same hash value. .. code:: ipython3 type(G) .. parsed-literal:: networkx.classes.graph.Graph Nodes ===== The graph ``G`` can be grown in several ways. NetworkX includes many graph generator functions and facilities to read and write graphs in many formats. To get started though we’ll look at simple manipulations. You can add one node at a time, .. code:: ipython3 G.add_node(1) .. code:: ipython3 G.nodes .. parsed-literal:: NodeView((1,)) add a list of nodes, .. code:: ipython3 G.add_nodes_from([2, 3]) .. code:: ipython3 nx.draw(G) .. image:: networkx_files/networkx_10_0.png .. code:: ipython3 help(G.add_nodes_from) .. parsed-literal:: Help on method add_nodes_from in module networkx.classes.graph: add_nodes_from(nodes_for_adding, **attr) method of networkx.classes.graph.Graph instance Add multiple nodes. Parameters ---------- nodes_for_adding : iterable container A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. attr : keyword arguments, optional (default= no attributes) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. See Also -------- add_node Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(), key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] Use keywords to update specific node attributes for every node. >>> G.add_nodes_from([1, 2], size=10) >>> G.add_nodes_from([3, 4], weight=0.4) Use (node, attrdict) tuples to update attributes for specific nodes. >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) >>> G.nodes[1]["size"] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.nodes[1]["size"] 11 or add any iterable container of nodes. You can also add nodes along with node attributes if your container yields 2-tuples (node, node_attribute_dict). Node attributes are discussed further below. .. code:: ipython3 H = nx.path_graph(10) .. code:: ipython3 nx.draw(H) .. image:: networkx_files/networkx_14_0.png .. code:: ipython3 type(H) .. parsed-literal:: networkx.classes.graph.Graph .. code:: ipython3 G.add_nodes_from(H) Note that ``G`` now contains the nodes of ``H`` as nodes of ``G``. In contrast, you could use the graph ``H`` as a node in ``G``. .. code:: ipython3 G.add_node(H) The graph ``G`` now contains ``H`` as a node. This flexibility is very powerful as it allows graphs of graphs, graphs of files, graphs of functions and much more. It is worth thinking about how to structure your application so that the nodes are useful entities. Of course you can always use a unique identifier in ``G`` and have a separate dictionary keyed by identifier to the node information if you prefer. Edges ===== ``G`` can also be grown by adding one edge at a time, .. code:: ipython3 G.add_edge(1, 2) e = (2, 3) G.add_edge(*e) # unpack edge tuple* by adding a list of edges, .. code:: ipython3 G.add_edges_from([(1, 2), (1, 3)]) or by adding any ebunch of edges. An *ebunch* is any iterable container of edge-tuples. An edge-tuple can be a 2-tuple of nodes or a 3-tuple with 2 nodes followed by an edge attribute dictionary, e.g., ``(2, 3, {'weight': 3.1415})``. Edge attributes are discussed further below .. code:: ipython3 G.add_edges_from(H.edges) .. code:: ipython3 G.edges .. parsed-literal:: EdgeView([(1, 2), (1, 0), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]) There are no complaints when adding existing nodes or edges. For example, after removing all nodes and edges, .. code:: ipython3 G.clear() .. code:: ipython3 len(G) .. parsed-literal:: 0 we add new nodes/edges and NetworkX quietly ignores any that are already present. .. code:: ipython3 G.add_edges_from([(1, 2), (1, 3)]) G.add_node(1) G.add_edge(1, 2) G.add_node("spam") # adds node "spam" G.add_nodes_from("spam") # adds 4 nodes: 's', 'p', 'a', 'm' G.add_edge(3, 'm') At this stage the graph ``G`` consists of 8 nodes and 3 edges, as can be seen by: .. code:: ipython3 G.number_of_nodes() .. parsed-literal:: 8 .. code:: ipython3 G.number_of_edges() .. parsed-literal:: 3 We can examine the nodes and edges. Four basic graph properties facilitate reporting: ``G.nodes``, ``G.edges``, ``G.adj`` and ``G.degree``. These are set-like views of the nodes, edges, neighbors (adjacencies), and degrees of nodes in a graph. They offer a continually updated read-only view into the graph structure. They are also dict-like in that you can look up node and edge data attributes via the views and iterate with data attributes using methods ``.items()``, ``.data('span')``. If you want a specific container type instead of a view, you can specify one. Here we use lists, though sets, dicts, tuples and other containers may be better in other contexts. .. code:: ipython3 list(G.nodes) .. parsed-literal:: [1, 2, 3, 'spam', 's', 'p', 'a', 'm'] .. code:: ipython3 list(G.edges) .. parsed-literal:: [(1, 2), (1, 3), (3, 'm')] .. code:: ipython3 list(G.adj[1]) # or list(G.neighbors(1)) .. parsed-literal:: [2, 3] .. code:: ipython3 G.degree[1] # the number of edges incident to 1 .. parsed-literal:: 2 One can specify to report the edges and degree from a subset of all nodes using an *nbunch*. An *nbunch* is any of: None (meaning all nodes), a node, or an iterable container of nodes that is not itself a node in the graph. .. code:: ipython3 G.edges([2, 'm']), G.degree([2, 3]) .. parsed-literal:: (EdgeDataView([(2, 1), ('m', 3)]), DegreeView({2: 1, 3: 2})) One can remove nodes and edges from the graph in a similar fashion to adding. Use methods ``Graph.remove_node()``, ``Graph.remove_nodes_from()``, ``Graph.remove_edge()`` and ``Graph.remove_edges_from()``, e.g. .. code:: ipython3 G.remove_node(2) G.remove_nodes_from("spam") list(G.nodes) .. parsed-literal:: [1, 3, 'spam'] .. code:: ipython3 G.remove_edge(1, 3) When creating a graph structure by instantiating one of the graph classes you can specify data in several formats. .. code:: ipython3 G.add_edge(1, 2) H = nx.DiGraph(G) # create a DiGraph using the connections from G list(H.edges()) .. parsed-literal:: [(1, 2), (2, 1)] .. code:: ipython3 edgelist = [(0, 1), (1, 2), (2, 3)] H = nx.Graph(edgelist) What to use as nodes and edges ============================== You might notice that nodes and edges are not specified as NetworkX objects. This leaves you free to use meaningful items as nodes and edges. The most common choices are numbers or strings, but a node can be any hashable object (except ``None``), and an edge can be associated with any object ``x`` using ``G.add_edge(n1, n2, object=x)``. As an example, ``n1`` and ``n2`` could be protein objects from the RCSB Protein Data Bank, and ``x`` could refer to an XML record of publications detailing experimental observations of their interaction. We have found this power quite useful, but its abuse can lead to unexpected surprises unless one is familiar with Python. If in doubt, consider using ``convert_node_labels_to_integers()`` to obtain a more traditional graph with integer labels. Accessing edges and neighbors ============================= In addition to the views ``Graph.edges()``, and ``Graph.adj()``, access to edges and neighbors is possible using subscript notation. .. code:: ipython3 G[1] # same as G.adj[1] .. parsed-literal:: AtlasView({2: {}}) .. code:: ipython3 G[1][2], G.edges[1, 2] .. parsed-literal:: ({}, {}) You can get/set the attributes of an edge using subscript notation if the edge already exists. .. code:: ipython3 G.add_edge(1, 3) G[1][3]['color'] = "blue" G.edges[1, 2]['color'] = "red" Fast examination of all (node, adjacency) pairs is achieved using ``G.adjacency()``, or ``G.adj.items()``. Note that for undirected graphs, adjacency iteration sees each edge twice. .. code:: ipython3 FG = nx.Graph() FG.add_weighted_edges_from( [(1, 2, 0.125), (1, 3, 0.75), (2, 4, 1.2), (3, 4, 0.375)]) for n, nbrs in FG.adj.items(): for nbr, eattr in nbrs.items(): wt = eattr['weight'] if wt < 0.5: print('(%d, %d, %.3f)' % (n, nbr, wt)) .. parsed-literal:: (1, 2, 0.125) (2, 1, 0.125) (3, 4, 0.375) (4, 3, 0.375) Convenient access to all edges is achieved with the edges property. .. code:: ipython3 for (u, v, wt) in FG.edges.data('weight'): if wt < 0.5: print('(%d, %d, %.3f)' % (u, v, wt)) .. parsed-literal:: (1, 2, 0.125) (3, 4, 0.375) Adding attributes to graphs, nodes, and edges ============================================= Attributes such as weights, labels, colors, or whatever Python object you like, can be attached to graphs, nodes, or edges. Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but attributes can be added or changed using ``add_edge``, ``add_node`` or direct manipulation of the attribute dictionaries named ``G.graph``, ``G.nodes``, and ``G.edges`` for a graph ``G``. Graph attributes ---------------- Assign graph attributes when creating a new graph .. code:: ipython3 G = nx.Graph(day="Friday") G.graph .. parsed-literal:: {'day': 'Friday'} .. code:: ipython3 type(_) .. parsed-literal:: dict Or you can modify attributes later .. code:: ipython3 G.graph['day'] = "Monday" G.graph .. parsed-literal:: {'day': 'Monday'} Node attributes =============== Add node attributes using ``add_node()``, ``add_nodes_from()``, or ``G.nodes`` .. code:: ipython3 G.add_node(1, time='5pm') G.add_nodes_from([3], time='2pm') G.nodes[1] .. parsed-literal:: {'time': '5pm'} .. code:: ipython3 G.nodes[1]['room'] = 714 G.nodes.data() .. parsed-literal:: NodeDataView({1: {'time': '5pm', 'room': 714}, 3: {'time': '2pm'}}) Note that adding a node to ``G.nodes`` does not add it to the graph, use ``G.add_node()`` to add new nodes. Similarly for edges. Edge Attributes =============== Add/change edge attributes using ``add_edge()``, ``add_edges_from()``, or subscript notation. .. code:: ipython3 G.add_edge(1, 2, weight=4.7 ) G.add_edges_from([(3, 4), (4, 5)], color='red') G.add_edges_from([(1, 2, {'color': 'blue'}), (2, 3, {'weight': 8})]) G[1][2]['weight'] = 4.7 G.edges[3, 4]['weight'] = 4.2 The special attribute ``weight`` should be numeric as it is used by algorithms requiring weighted edges. Directed graphs The ``DiGraph`` class provides additional properties specific to directed edges, e.g., ``DiGraph.out_edges()``, ``DiGraph.in_degree()``, ``DiGraph.predecessors()``, ``DiGraph.successors()`` etc. To allow algorithms to work with both classes easily, the directed versions of ``neighbors()`` is equivalent to ``successors()`` while ``degree`` reports the sum of ``in_degree`` and ``out_degree`` even though that may feel inconsistent at times. .. code:: ipython3 DG = nx.DiGraph() DG.add_weighted_edges_from([(1, 2, 0.5), (3, 1, 0.75)]) DG.out_degree(1, weight='weight'), DG.degree(1, weight='weight') .. parsed-literal:: (0.5, 1.25) .. code:: ipython3 list(DG.successors(1)), list(DG.neighbors(1)) .. parsed-literal:: ([2], [2]) Some algorithms work only for directed graphs and others are not well defined for directed graphs. Indeed the tendency to lump directed and undirected graphs together is dangerous. If you want to treat a directed graph as undirected for some measurement you should probably convert it using ``Graph.to_undirected()`` or with .. code:: ipython3 H = nx.Graph(G) # convert G to undirected graph Multigraphs =========== NetworkX provides classes for graphs which allow multiple edges between any pair of nodes. The ``MultiGraph`` and ``MultiDiGraph`` classes allow you to add the same edge twice, possibly with different edge data. This can be powerful for some applications, but many algorithms are not well defined on such graphs. Where results are well defined, e.g., ``MultiGraph.degree()`` we provide the function. Otherwise you should convert to a standard graph in a way that makes the measurement well defined. .. code:: ipython3 MG = nx.MultiGraph() MG.add_weighted_edges_from([(1, 2, 0.5), (1, 2, 0.75), (2, 3, 0.5)]) dict(MG.degree(weight='weight')) .. parsed-literal:: {1: 1.25, 2: 1.75, 3: 0.5} .. code:: ipython3 GG = nx.Graph() for n, nbrs in MG.adjacency(): for nbr, edict in nbrs.items(): minvalue = min([d['weight'] for d in edict.values()]) GG.add_edge(n, nbr, weight = minvalue) nx.shortest_path(GG, 1, 3) .. parsed-literal:: [1, 2, 3] Graph generators and graph operations ===================================== In addition to constructing graphs node-by-node or edge-by-edge, they can also be generated by 1. Applying classic graph operations, such as: :: subgraph(G, nbunch) - induced subgraph view of G on nodes in nbunch union(G1,G2) - graph union disjoint_union(G1,G2) - graph union assuming all nodes are different cartesian_product(G1,G2) - return Cartesian product graph compose(G1,G2) - combine graphs identifying nodes common to both complement(G) - graph complement create_empty_copy(G) - return an empty copy of the same graph class to_undirected(G) - return an undirected representation of G to_directed(G) - return a directed representation of G 2. Using a call to one of the classic small graphs, e.g., .. code:: ipython3 petersen = nx.petersen_graph() nx.draw(petersen) .. image:: networkx_files/networkx_78_0.png .. code:: ipython3 tutte = nx.tutte_graph() nx.draw(tutte) .. image:: networkx_files/networkx_79_0.png .. code:: ipython3 maze = nx.sedgewick_maze_graph() nx.draw(maze) .. image:: networkx_files/networkx_80_0.png .. code:: ipython3 tet = nx.tetrahedral_graph() nx.draw(tet) .. image:: networkx_files/networkx_81_0.png .. code:: ipython3 K_5 = nx.complete_graph(5) nx.draw(K_5) .. image:: networkx_files/networkx_82_0.png .. code:: ipython3 K_3_5 = nx.complete_bipartite_graph(3, 5) nx.draw(K_3_5) .. image:: networkx_files/networkx_83_0.png .. code:: ipython3 barbell = nx.barbell_graph(10, 10) nx.draw(barbell) .. image:: networkx_files/networkx_84_0.png .. code:: ipython3 lollipop = nx.lollipop_graph(10, 20) nx.draw(lollipop) .. image:: networkx_files/networkx_85_0.png .. code:: ipython3 er = nx.erdos_renyi_graph(100, 0.15) nx.draw(er) .. image:: networkx_files/networkx_86_0.png .. code:: ipython3 ws = nx.watts_strogatz_graph(30, 3, 0.1) nx.draw(ws) .. image:: networkx_files/networkx_87_0.png .. code:: ipython3 ba = nx.barabasi_albert_graph(100, 5) nx.draw(ba) .. image:: networkx_files/networkx_88_0.png .. code:: ipython3 red = nx.random_lobster(100, 0.9, 0.9) nx.draw(red) .. code:: ipython3 nx.write_gml(red, "path.to.file") mygraph = nx.read_gml("path.to.file") nx.draw(mygraph) Analyzing graphs ================ The structure of ``G`` can be analyzed using various graph-theoretic functions such as: .. code:: ipython3 G = nx.Graph() G.add_edges_from([(1, 2), (1, 3)]) G.add_node("spam") # adds node "spam" list(nx.connected_components(G)) .. parsed-literal:: [{1, 2, 3}, {'spam'}] .. code:: ipython3 sorted(d for n, d in G.degree()) .. parsed-literal:: [0, 1, 1, 2] .. code:: ipython3 nx.clustering(G) .. parsed-literal:: {1: 0, 2: 0, 3: 0, 'spam': 0} Some functions with large output iterate over (node, value) 2-tuples. These are easily stored in a `dict `__ structure if you desire. .. code:: ipython3 sp = dict(nx.all_pairs_shortest_path(G)) sp[3] .. parsed-literal:: {3: [3], 1: [3, 1], 2: [3, 1, 2]} See `Algorithms `__ for details on graph algorithms supported. Drawing graphs ============== NetworkX is not primarily a graph drawing package but basic drawing with Matplotlib as well as an interface to use the open source Graphviz software package are included. These are part of the ``networkx.drawing`` module and will be imported if possible. First import Matplotlib’s plot interface (pylab works too) .. code:: ipython3 import matplotlib.pyplot as plt You may find it useful to interactively test code using ``ipython -pylab``, which combines the power of ipython and matplotlib and provides a convenient interactive mode. To test if the import of ``networkx.drawing`` was successful draw ``G`` using one of .. code:: ipython3 G = nx.petersen_graph() plt.subplot(121) nx.draw(G, with_labels=True, font_weight='bold') plt.subplot(122) nx.draw_shell(G, nlist=[range(5, 10), range(5)], with_labels=True, font_weight='bold') .. image:: networkx_files/networkx_101_0.png when drawing to an interactive display. Note that you may need to issue a Matplotlib .. code:: ipython3 plt.show() command if you are not using matplotlib in interactive mode (see `Matplotlib FAQ `__ ). .. code:: ipython3 options = { 'node_color': 'black', 'node_size': 100, 'width': 3, } plt.subplot(221) nx.draw_random(G, **options) plt.subplot(222) nx.draw_circular(G, **options) plt.subplot(223) nx.draw_spectral(G, **options) plt.subplot(224) nx.draw_shell(G, nlist=[range(5,10), range(5)], **options) .. image:: networkx_files/networkx_105_0.png You can find additional options via ``draw_networkx()`` and layouts via ``layout``. You can use multiple shells with ``draw_shell()``. .. code:: ipython3 G = nx.dodecahedral_graph() shells = [[2, 3, 4, 5, 6], [8, 1, 0, 19, 18, 17, 16, 15, 14, 7], [9, 10, 11, 12, 13]] nx.draw_shell(G, nlist=shells, **options) .. image:: networkx_files/networkx_107_0.png To save drawings to a file, use, for example .. code:: ipython3 nx.draw(G) plt.savefig("path.png") .. image:: networkx_files/networkx_109_0.png writes to the file ``path.png`` in the local directory. If Graphviz and PyGraphviz or pydot, are available on your system, you can also use ``nx_agraph.graphviz_layout(G)`` or ``nx_pydot.graphviz_layout(G)`` to get the node positions, or write the graph in dot format for further processing. .. code:: ipython3 from networkx.drawing.nx_pydot import write_dot pos = nx.nx_agraph.graphviz_layout(G) nx.draw(G, pos=pos) write_dot(G, 'file.dot') .. image:: networkx_files/networkx_112_0.png See `Drawing `__ for additional details. Examples ======== A complete gallery of examples can be found at https://networkx.github.io/documentation/stable/auto_examples/index.html https://networkx.github.io/documentation/stable/auto_examples/basic/plot_read_write.html#sphx-glr-auto-examples-basic-plot-read-write-py .. code:: ipython3 # Author: Aric Hagberg (hagberg@lanl.gov) G = nx.grid_2d_graph(5, 5) # 5x5 grid # print the adjacency list #for line in nx.generate_adjlist(G): # print(line) # write edgelist to grid.edgelist nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # read edgelist from grid.edgelist H = nx.read_edgelist(path="grid.edgelist", delimiter=":") nx.draw(H) plt.show() .. image:: networkx_files/networkx_116_0.png https://networkx.github.io/documentation/stable/auto_examples/basic/plot_properties.html#sphx-glr-auto-examples-basic-plot-properties-py .. code:: ipython3 G = nx.lollipop_graph(4, 6) pathlengths = [] print("source vertex {target:length, }") for v in G.nodes(): spl = dict(nx.single_source_shortest_path_length(G, v)) print('{} {} '.format(v, spl)) for p in spl: pathlengths.append(spl[p]) print('') print("average shortest path length %s" % (sum(pathlengths) / len(pathlengths))) .. parsed-literal:: source vertex {target:length, } 0 {0: 0, 1: 1, 2: 1, 3: 1, 4: 2, 5: 3, 6: 4, 7: 5, 8: 6, 9: 7} 1 {1: 0, 0: 1, 2: 1, 3: 1, 4: 2, 5: 3, 6: 4, 7: 5, 8: 6, 9: 7} 2 {2: 0, 0: 1, 1: 1, 3: 1, 4: 2, 5: 3, 6: 4, 7: 5, 8: 6, 9: 7} 3 {3: 0, 0: 1, 1: 1, 2: 1, 4: 1, 5: 2, 6: 3, 7: 4, 8: 5, 9: 6} 4 {4: 0, 5: 1, 3: 1, 6: 2, 0: 2, 1: 2, 2: 2, 7: 3, 8: 4, 9: 5} 5 {5: 0, 4: 1, 6: 1, 3: 2, 7: 2, 0: 3, 1: 3, 2: 3, 8: 3, 9: 4} 6 {6: 0, 5: 1, 7: 1, 4: 2, 8: 2, 3: 3, 9: 3, 0: 4, 1: 4, 2: 4} 7 {7: 0, 6: 1, 8: 1, 5: 2, 9: 2, 4: 3, 3: 4, 0: 5, 1: 5, 2: 5} 8 {8: 0, 7: 1, 9: 1, 6: 2, 5: 3, 4: 4, 3: 5, 0: 6, 1: 6, 2: 6} 9 {9: 0, 8: 1, 7: 2, 6: 3, 5: 4, 4: 5, 3: 6, 0: 7, 1: 7, 2: 7} average shortest path length 2.86 .. code:: ipython3 # histogram of path lengths dist = {} for p in pathlengths: if p in dist: dist[p] += 1 else: dist[p] = 1 print('') print("length #paths") verts = dist.keys() for d in sorted(verts): print('%s %d' % (d, dist[d])) .. parsed-literal:: length #paths 0 10 1 24 2 16 3 14 4 12 5 10 6 8 7 6 .. code:: ipython3 print("radius: %d" % nx.radius(G)) print("diameter: %d" % nx.diameter(G)) print("eccentricity: %s" % nx.eccentricity(G)) print("center: %s" % nx.center(G)) print("periphery: %s" % nx.periphery(G)) print("density: %s" % nx.density(G)) .. parsed-literal:: radius: 4 diameter: 7 eccentricity: {0: 7, 1: 7, 2: 7, 3: 6, 4: 5, 5: 4, 6: 4, 7: 5, 8: 6, 9: 7} center: [5, 6] periphery: [0, 1, 2, 9] density: 0.26666666666666666 .. code:: ipython3 nx.draw(G, with_labels=True) plt.show() .. image:: networkx_files/networkx_121_0.png https://networkx.github.io/documentation/stable/auto_examples/drawing/plot_node_colormap.html#sphx-glr-auto-examples-drawing-plot-node-colormap-py .. code:: ipython3 # Author: Aric Hagberg (hagberg@lanl.gov) G = nx.cycle_graph(24) pos = nx.spring_layout(G, iterations=200) nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues) plt.show() .. image:: networkx_files/networkx_123_0.png https://networkx.github.io/documentation/stable/auto_examples/drawing/plot_edge_colormap.html#sphx-glr-auto-examples-drawing-plot-edge-colormap-py .. code:: ipython3 # Author: Aric Hagberg (hagberg@lanl.gov) G = nx.star_graph(20) pos = nx.spring_layout(G) colors = range(20) nx.draw(G, pos, node_color='#A0CBE2', edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=False) plt.show() .. image:: networkx_files/networkx_125_0.png https://networkx.github.io/documentation/stable/auto_examples/drawing/plot_spectral_grid.html#sphx-glr-auto-examples-drawing-plot-spectral-grid-py .. code:: ipython3 options = { 'node_color': 'C0', 'node_size': 100, } G = nx.grid_2d_graph(6, 6) plt.subplot(332) nx.draw_spectral(G, **options) G.remove_edge((2, 2), (2, 3)) plt.subplot(334) nx.draw_spectral(G, **options) G.remove_edge((3, 2), (3, 3)) plt.subplot(335) nx.draw_spectral(G, **options) .. image:: networkx_files/networkx_127_0.png .. code:: ipython3 G.remove_edge((2, 2), (3, 2)) plt.subplot(336) nx.draw_spectral(G, **options) G.remove_edge((2, 3), (3, 3)) plt.subplot(337) nx.draw_spectral(G, **options) G.remove_edge((1, 2), (1, 3)) plt.subplot(338) nx.draw_spectral(G, **options) G.remove_edge((4, 2), (4, 3)) plt.subplot(339) nx.draw_spectral(G, **options) .. image:: networkx_files/networkx_128_0.png https://networkx.github.io/documentation/stable/auto_examples/drawing/plot_directed.html#sphx-glr-auto-examples-drawing-plot-directed-py .. code:: ipython3 # Author: Rodrigo Dorantes-Gilardi (rodgdor@gmail.com) import matplotlib as mpl import matplotlib.pyplot as plt import networkx as nx G = nx.generators.directed.random_k_out_graph(10, 3, 0.5) pos = nx.layout.spring_layout(G) node_sizes = [3 + 10 * i for i in range(len(G))] M = G.number_of_edges() edge_colors = range(2, M + 2) edge_alphas = [(5 + i) / (M + 4) for i in range(M)] .. code:: ipython3 nodes = nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='blue') edges = nx.draw_networkx_edges(G, pos, node_size=node_sizes, arrowstyle='->', arrowsize=10, edge_color=edge_colors, edge_cmap=plt.cm.Blues, width=2) # set alpha value for each edge for i in range(M): edges[i].set_alpha(edge_alphas[i]) pc = mpl.collections.PatchCollection(edges, cmap=plt.cm.Blues) pc.set_array(edge_colors) plt.colorbar(pc) ax = plt.gca() ax.set_axis_off() plt.show() .. image:: networkx_files/networkx_131_0.png https://networkx.github.io/documentation/stable/auto_examples/graph/plot_roget.html#sphx-glr-auto-examples-graph-plot-roget-py .. code:: ipython3 # Authors: Brendt Wohlberg, Aric Hagberg (hagberg@lanl.gov) import gzip import re import sys import matplotlib.pyplot as plt from networkx import nx def roget_graph(): """ Return the thesaurus graph from the roget.dat example in the Stanford Graph Base. """ # open file roget_dat.txt.gz (or roget_dat.txt) fh = gzip.open('roget_dat.txt.gz', 'r') G = nx.DiGraph() for line in fh.readlines(): line = line.decode() if line.startswith("*"): # skip comments continue if line.startswith(" "): # this is a continuation line, append line = oldline + line if line.endswith("\\\n"): # continuation line, buffer, goto next oldline = line.strip("\\\n") continue (headname, tails) = line.split(":") # head numfind = re.compile("^\d+") # re to find the number of this word head = numfind.findall(headname)[0] # get the number G.add_node(head) for tail in tails.split(): if head == tail: print("skipping self loop", head, tail, file=sys.stderr) G.add_edge(head, tail) return G .. code:: ipython3 G = roget_graph() print("Loaded roget_dat.txt containing 1022 categories.") print("digraph has %d nodes with %d edges" % (nx.number_of_nodes(G), nx.number_of_edges(G))) UG = G.to_undirected() print(nx.number_connected_components(UG), "connected components") options = { 'node_color': 'black', 'node_size': 1, 'line_color': 'grey', 'linewidths': 0, 'width': 0.1, } nx.draw_circular(UG, **options) plt.show() .. parsed-literal:: skipping self loop 400 400 .. parsed-literal:: Loaded roget_dat.txt containing 1022 categories. digraph has 1022 nodes with 5075 edges 21 connected components .. image:: networkx_files/networkx_134_2.png